

AVISO IMPORTANTE – El Curriculum Vitae no podrá exceder de 4 páginas. Para rellenar correctamente este documento, lea detenidamente las instrucciones disponibles en la web de la convocatoria.

IMPORTANT – The Curriculum Vitae cannot exceed 4 pages. Instructions to fill this document are available in the website.

Fecha del CVA	6.11.2023
---------------	-----------

Part A. DATOS PERSONALES

Nombre	Lucas			
Apellidos	Lamata M	anuel		
Sexo (*)	Hombre	pre Fecha de nacimiento		
DNI, NIE, pasaporte				
Dirección email	llamata@	us.es	URL Web	
Open Researcher and Contributor ID (ORCID) (*)		0000-0002-9504-8685		

^{*} datos obligatorios

A.1. Situación profesional actual

Puesto	Profesor Titular de Universida	ıd		
Fecha inicio	22.7.2019			
Organismo/ Institución	Universidad de Sevilla			
Departamento/ Centro	Física Atómica, Molecular y Nuclear			
País	España	Teléfono		
Palabras clave	Tecnologías Cuánticas, Sim Cuántico de Máquinas	ulaciones	Cuánticas,	Aprendizaje

A.2. Situación profesional anterior (incluye interrupciones en la carrera investigadora, de acuerdo con el Art. 14. b) de la convocatoria, indicar meses totales)

Periodo	Puesto/ Institución/ País / Motivo interrupción
2013-2019	Investigador RyC e investigador doctor permanente (el segundo desde 5.2019 hasta mi traslado a Sevilla), en la Universidad del País Vasco
2011-2013	Investigador posdoctoral Marie Curie IEF, Universidad del País Vasco
2009-2011	Investigador posdoctoral Max-Planck, Instituto Max-Planck de Óptica Cuántica, Garching, Alemania
2007-2009	Investigador posdoctoral Humboldt, Instituto Max-Planck de Óptica Cuántica, Garching, Alemania
2004-2007	Estudiante de doctorado FPU, IFF CSIC, Madrid

(Incorporar todas las filas que sean necesarias)

A.3. Formación Académica

Grado/Master/Tesis	Universidad/Pais	Año
Doctorado en Física	Universidad Autónoma de Madrid	2007
Licenciado en Física	Universidad Complutense de Madrid	2003

(Incorporar todas las filas que sean necesarias)

Parte B. RESUMEN DEL CV (máx. 5000 caracteres, incluyendo espacios): MUY IMPORTANTE: se ha modificado el contenido de este apartado para progresar en la adecuación a los principios DORA. Lea atentamente las "Instrucciones para cumplimentar el CVA"

3 sexenios de investigación: 2004-2009, 2010-2015, 2016-2021.

Más de 110 artículos en revistas JCR, de los cuales 1 Nature, 1 Rev. Mod. Phys., 3 Nat Comm. 2 PRX, y 20 PRLs.

38 artículos en revistas D1 de acuerdo a su año de publicación, y >90 en T1.

Unas 8000 citas de acuerdo a Google Scholar, con índice H de 44, y artículo más citado con unas 800 citas.

Soy Profesor Titular de Universidad de Física Teórica en el Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, España. Mi investigación hasta ahora se ha centrado en la óptica cuántica y la información cuántica, incluyendo propuestas pioneras de simulaciones cuánticas de mecánica cuántica relativista, sistemas fermiónicos y modelos de espín, con iones atrapados y circuitos superconductores. También me interesan nuevos enfoques de la simulación cuántica y, en este sentido, creé, con mis colaboradores, el concepto de simulaciones cuánticas digital-analógicas, que aprovecha la escalabilidad de los dispositivos analógicos y la versatilidad y universalidad de los dispositivos cuánticos digitales. y puede ser una forma prometedora de lograr nuevos conocimientos sobre sistemas cuánticos a través de dispositivos NISQ en el corto plazo. También analizo la posibilidad de combinar protocolos de inteligencia artificial y aprendizaje automático con dispositivos cuánticos. Disfruto trabajando con experimentalistas, y he hecho propuestas y participado en 16 experimentos en colaboración con hasta 17 grupos experimentales destacados en ciencia cuántica, con iones atrapados, electrones en trampas de Penning, circuitos superconductores, átomos fríos, fotónica cuántica y resonancia magnética nuclear. . Hasta 19 de mis propuestas teóricas de implementación se han llevado a cabo en experimentos por grupos de primer nivel.

Part C. LISTADO DE APORTACIONES MÁS RELEVANTES (últimos 10 años)- Pueden incluir publicaciones, datos, software, contratos o productos industriales, desarrollos clínicos, publicaciones en conferencias, etc. Si estas aportaciones tienen DOI, por favor inclúyalo.

C.1. Publicaciones más importantes en libros y revistas con "peer review" y conferencias (ver instrucciones).

- 1. Jie Peng, Juncong Zheng, Jing Yu, Pinghua Tang, G. Alvarado Barrios, Jianxin Zhong, Enrique Solano, F. Albarran-Arriagada, and Lucas Lamata. "One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W-State Generation". Phys. Rev. Lett. 127, 043604 (2021).
- 2. F Albarrán-Arriagada, J. C. Retamal, E. Solano, and L. Lamata. "Reinforcement learning for semi-autonomous approximate quantum eigensolver", Mach. Learn.: Sci. Technol. 1, 015002 (2020).
- 3. P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano. "Ultrastrong coupling regimes of light-matter interaction". Rev. Mod. Phys. 91, 025005 (2019).
- 4. L. Lamata, U. Alvarez-Rodriguez, J. D. Martín-Guerrero, M. Sanz, and E. Solano. "Quantum Autoencoders via Quantum Adders with Genetic Algorithms", Quantum Sci. Technol. 4, 014007 (2019).
- 5. Xiang Zhang, Kuan Zhang, Yangchao Shen, Shuaining Zhang, Jingning Zhang, Man-Hong Yung, Jorge Casanova, Julen S. Pedernales, Lucas Lamata, Enrique Solano, and Kihwan Kim, "Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion", Nature Communications 9, 195 (2018).
- 6. F. Albarrán-Arriagada, J. C. Retamal, E. Solano, and L. Lamata. "Measurement-based adaptation protocol with quantum reinforcement learning", Phys. Rev. A 98, 042315 (2018).

- 7. R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A.
- G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and John M. Martinis, "Digitized adiabatic quantum computing with a superconducting circuit", Nature 534, 222 (2016).
- 8. Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potocnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff, "Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics", Phys. Rev. X 5, 021027 (2015).
- 9. R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T.
- C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-
- C. Hoi, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E.

Solano, and John M. Martinis, "Digital quantum simulation of fermionic models with a superconducting circuit", Nature Communications 6, 7654 (2015).

10. L. Lamata, J. León, T. Schätz, and E. Solano. Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion. Phys. Rev. Lett. 98, 253005 (2007).

C.2. Congresos,

1. Autores: Lucas Lamata.

Título: Quantum machine learning with quantum technologies

Contribución: Charla Invitada.

Congreso: Future Trends Forum, Bankinter.

Lugar: Hotel Mandarin Oriental Ritz, Madrid.

Fecha: 29 Noviembre-1 Diciembre 2022.

2. Autores: Lucas Lamata.

Título: Quantum simulations of strong light-matter coupling with quantum technologies

Contribución: Charla Invitada.

Congreso: Quantum Optics and Solid State VII

Lugar: Chile. Formato online.

Fecha: 18-19 Enero 2021.

C.3. Proyectos o líneas de investigación en los que ha participado, indicando su contribución personal. En el caso de investigadores jóvenes, indicar lineas de investigación de las que hayan sido responsables.

1. Titulo: Aprendizaje cuántico de máquinas y sistemas cuánticos abiertos

Organismo Financiador: Junta de Andalucía

Presupuesto: 46.000 Euros

Investigador Principal: Lucas Lamata (PI).

Periodo: 2021-2023.

2. Titulo: Ciencia Frontera con Tecnologías Cuánticas

Organismo Financiador: Junta de Andalucía

Presupuesto: 57.000 Euros

Investigadores Principales: Pedro Pérez-Fernández y Lucas Lamata.

Periodo: 2021-2023.

3. Titulo: Temas Emergentes en Tecnologías Cuánticas.

Organismo Financiador Ministerio de Ciencia, Innovación y Universidades de España.

Presupuesto: 170.000 Euros, incluyendo 88.000 Euros de costes directos e indirectos más una posición predoctoral.

Investigadores Principales: Enrique Solano (PI) y Lucas Lamata (Co-PI).

Periodo: 2019-2021.

4. Titulo: An Open Superconducting Quantum Computer (OpenSuperQ).

Organismo Financiador: Comisión Europea (1a convocatoria del Quantum Technologies Flagship).

Presupuesto: 10.3 Meuros (total del proyecto), de los cuales 400,000 Euros asignados al nodo de Bilbao.

Invesitgadores Principales: Frank Wilhelm (Coordinador en Saarlandes University, Alemania).

Del nodo de Bilbao: Enrique Solano (PI) y Lucas Lamata (Co-PI).

Periodo: 2018-2021.

5.Título: Heterogeneous Digital-Analog Quantum Dynamics Simulations (HDAQDS).

Organismo Financiador: Departamento de Energía (DOE), EEUU.

Presupuesto: \$290,000 asignados a la colaboración Bilbao-Oak Ridge, incluyendo una posición postdoctoral supervisada por Bilbao.

Presupuesto total: \$3,000,000.

Investigadores Principales: Pavel Lougovski (Project Director en Oak Ridge National Laboratory, EEUU). Del nodo de Bilbao: Enrique Solano (PI) y Lucas Lamata (Co-PI). Periodo:

2017-2020.

6. Titulo: Información Cuántica con Tecnologías Cuánticas.

Organismo Financiador: Ministerio de Economía y Competitividad (MINECO). Presupuesto: 106.722 Euros.

Investigadores Principales: Lucas Lamata (PI) y Enrique Solano (Co-PI). Investigadores participantes: 9.

Periodo: 2016-2018.